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Because of the satellite sensor working conditions and the atmospheric environment, remote sensing A Learned
Images often suffer from missing information problems, such as dead pixels and thick cloud cover. It Temporal network with
should be stressed that, such discontinuous data cannot easily be used in the subsequent applications o Data | converged Loss
[1]. Therefore, missing information reconstruction is an important task in the field of remote sensing Real
Imagery processing. , Data | |
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__ Label - Inputl In the proposed model, we input two types of data into the network,

one of which is the spatial data with missing areas, and the other is
the complementary information with spectral or temporal data.
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Proposed STS-CNN model. (Available Codes: https://github.com/WHUQZhang/STS-CNN)
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Experiment and Result Conclusion

NETWORK TRAINING AND TESTING We presented a novel method for the reconstruction of remote
sensing Imagery with missing data, through a unified spatial-
temporal-spectral framework (STS-CNN). From the perspective
of non-linear expression with deep learning theory and spatial-
temporal-spectral fusion, STS-CNN can jointly take advantage
of auxiliary complementary data from the spatial, spectral, and
temporal domains for different missing information tasks.

Although the proposed method performs well for reconstructing
missing data, it still has some unavoidable limitations. Another
possible strategy which will be explored in our future research
like adding a priori constraint.

The proposed model was trained using the stochastic gradient descent (SGD)
algorithm as the gradient descent optimization method, where the learning rate
was Initialized to 0.01 for the whole network. For the different reconstruction
tasks, the training processes were all set to 100 epochs. After every 20 epochs,
the learning rate was multiplied by a declining factor 0.1.

For the dead lines of Agqua MODIS Band 6, we selected original Terra
MODIS imagery as our training dataset, since it has a high degree of similarity.
For the training of the network, we chose and cropped 600 images of size
400X400X7 and set each patch size as 40X 40 and stride 40. For the real
dead lines of Aqua MODIS band 6, an Aqua MODIS L1B 500-m resolution
Image of size 400 X400 X7 was used in the real-data experiments.
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> Experiment 1: Real-data missing data recovery results for the Aqua
MODIS band 6 deadline image.
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